Nenhuma descrição
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

forcasting2.py 21KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571
  1. from flask import Flask, render_template, send_file, request, redirect, Response
  2. import os
  3. import pandas as pd
  4. import warnings
  5. import json
  6. import requests
  7. from urllib.request import urlopen
  8. warnings.filterwarnings("ignore")
  9. app = Flask(__name__)
  10. @app.route("/", methods=["GET"])
  11. def home():
  12. return 'forcasting app running'
  13. ######################################################################################################################
  14. list_output=[]
  15. def day(Num,df):
  16. #url='https://qa.bizgaze.app/apis/v4/bizgaze/integrations/demandforecast/getitemdata'
  17. url= get_url
  18. response = urlopen(url)
  19. data_json = json.loads(response.read())
  20. headers = {
  21. 'Authorization':get_url_token,
  22. #'Authorization':'stat 873f2e6f70b3483e983972f96fbf5ea4',#qa
  23. 'Content-Type': 'application/json'
  24. }
  25. response = requests.request("GET", url, headers=headers, data=data_json)
  26. #print("##############################################################")
  27. a=response.text
  28. # print(response.text)
  29. import pandas as pd
  30. df2 = pd.read_json(response.text, orient ='index')
  31. df2=df2.reset_index()
  32. df2.columns = ['key','value']
  33. #print(df2)
  34. a=df2['value'][0]
  35. j=json.loads(a)
  36. userdata = pd.DataFrame(j)
  37. #df1
  38. itemid=userdata[['itemname','itemid']]
  39. itemid.columns = ['ItemName', 'ItemId']
  40. #df1=pd.read_csv(r'./upload/' + name)
  41. #df1=df1[df1['obdate']!='01/01/0001']
  42. userdata.columns = ['journaldate','sum','itemname','itemid']
  43. # import pandas as pd
  44. # userdata = pd.read_csv(r'C:\Users\Bizga\Desktop\forcast\5yearsitems.csv')
  45. # itemid = userdata[['itemname', 'itemid']]
  46. #userdata['journaldate'] = pd.to_datetime(userdata['journaldate'])
  47. userdata["journaldate"] = userdata["journaldate"].astype(str)
  48. userdata[["year", "month", "day"]] = userdata["journaldate"].str.split("/", expand = True)
  49. #userdata['Month-Year']=userdata['year'].astype(str)+'-'+userdata['month'].astype(str)
  50. item_unique_name = userdata['itemname'].unique()
  51. #df=pd.read_csv("C:\\Users\\Bizgaze\\2021_2022.csv")
  52. # Group the DataFrame by the 'item' column
  53. grouped = userdata.groupby('itemname')
  54. # Print the unique items in the 'item' column
  55. #print(grouped.groups.keys())
  56. # Iterate over the unique items and print the group data
  57. for item, userdata in grouped:
  58. print("itemname: ", item)
  59. item_id = userdata.iloc[-1]['itemid']
  60. print(item_id)
  61. userdata= userdata.groupby('journaldate').sum()
  62. userdata= userdata.reset_index()
  63. #print(userdata)
  64. fulldata=userdata[['journaldate','sum']]
  65. fulldata.columns = ["Dates","SALES"]
  66. #************************************************************************************************************************
  67. ## Use Techniques Differencing
  68. import pandas as pd
  69. from pandas import DataFrame
  70. # userdata=pd.read_csv(r"C:\Users\Bizgaze\ipynb files\TS forcasting\working\139470.csv")
  71. userdata.columns = ['Date', 'sales','sku']
  72. from statsmodels.tsa.stattools import adfuller
  73. DATE=[]
  74. SALES=[]
  75. def adf_test(series,userdata):
  76. result=adfuller(series)
  77. print('ADF Statistics: {}'.format(result[0]))
  78. print('p- value: {}'.format(result[1]))
  79. if result[1] <= 0.05:
  80. print("strong evidence against the null hypothesis, reject the null hypothesis. Data has no unit root and is stationary")
  81. else:
  82. #print(userdata)
  83. print(stationary_test(userdata))
  84. print("weak evidence against null hypothesis, time series has a unit root, indicating it is non-stationary ")
  85. #********************************************* stationary or non-stationary **********************************************************
  86. def stationary_test(userdata):
  87. data=pd.DataFrame(userdata)
  88. for i in range(1,13):
  89. print(i)
  90. sales_data=DataFrame()
  91. data['sales']=data['sales'].shift(i)
  92. data.dropna(inplace=True)
  93. #print( userdata['sales'])
  94. try:
  95. X=adf_test(data["sales"],userdata="nothing")
  96. if "non-stationary" in str(X):
  97. print("non-stationary")
  98. else:
  99. print("stationary")
  100. #print(userdata[["Date","sales"]])
  101. #df_sale=pd.DataFrame(userdata)
  102. DATE.append(data["Date"])
  103. SALES.append(data["sales"])
  104. #df4 = pd.concat([data, sales_data], axis=1)
  105. return "done"
  106. break
  107. except ValueError:
  108. pass
  109. try:
  110. adf_test(userdata["sales"],userdata)
  111. except ValueError:
  112. pass
  113. sales=pd.DataFrame(SALES).T
  114. dates=pd.DataFrame(DATE).T
  115. try:
  116. df4 = pd.concat([dates["Date"],sales["sales"]], axis=1)
  117. df4=df4.dropna()
  118. print(df4)
  119. except KeyError:
  120. df4=userdata[['Date','sales']]
  121. df4=df4.dropna()
  122. print(df4)
  123. pass
  124. #####################################################################################################################
  125. userdata=df4
  126. a = userdata.iloc[-1]['Date']
  127. userdata['Date'] = pd.to_datetime(userdata['Date'])
  128. userdata["Date"] = userdata["Date"].astype(str)
  129. userdata[["year", "month", "day"]] = userdata["Date"].str.split("-", expand = True)
  130. #userdata[["year", "month"]] = userdata["Month"].str.split("-", expand=True)
  131. #userdata = userdata[["year","month",'sum']]
  132. userdata["year"] = userdata["year"].astype(int)
  133. userdata["month"] = userdata["month"].astype(int)
  134. userdata["day"] = userdata["day"].astype(int)
  135. #####################################################################################################################
  136. list_dates=[]
  137. import datetime
  138. days=int(Num)+1
  139. import pandas as pd
  140. base_date=pd.to_datetime(a)
  141. for x in range(1,days):
  142. dates=(base_date + datetime.timedelta(days=x))
  143. dates=str(dates).replace(" 00:00:00","")
  144. #print(dates)
  145. list_dates.append(dates)
  146. fut_date = pd.DataFrame(list_dates)
  147. fut_date.columns = ["Dates"]
  148. future_dates=pd.DataFrame(list_dates)
  149. future_dates.columns=["Dates"]
  150. future_dates[["year", "month", "day"]] = future_dates["Dates"].str.split("-", expand=True)
  151. future_dates.drop(['Dates'], axis=1, inplace=True)
  152. future_dates["year"] = future_dates["year"].astype(int)
  153. future_dates["month"] = future_dates["month"].astype(int)
  154. future_dates["day"] = future_dates["day"].astype(int)
  155. #print(future_dates)
  156. ###############################################################################
  157. userdata['sales']=userdata["sales"].astype(float)
  158. dependent = userdata[['year','month','day']]
  159. independent = userdata['sales']
  160. import numpy as np
  161. import pandas as pd
  162. import xgboost
  163. from sklearn.model_selection import train_test_split
  164. from sklearn.model_selection import GridSearchCV
  165. from sklearn.metrics import roc_auc_score
  166. import matplotlib.pyplot as plt
  167. #model = xgboost.XGBRegressor()
  168. from sklearn.ensemble import RandomForestRegressor
  169. model = RandomForestRegressor(random_state=1,n_jobs=-1)
  170. #model.fit(dependent, independent)
  171. model.fit(dependent, independent)
  172. #future=pd.read_csv('future_dates.csv')
  173. future_prediction = model.predict(future_dates)
  174. #print(future_prediction)
  175. df=pd.DataFrame(future_prediction)
  176. df.columns = ["SALES"]
  177. frames = [fut_date, df]
  178. result = pd.concat(frames,axis=1)
  179. result['itemname'] = item
  180. result['itemid'] =item_id
  181. result.columns = ['Date','Predict','ItemName','ItemId']
  182. #result['Predict']=result["Predict"].astype(int)
  183. result['UpperLimit']=result["Predict"].mean()+result['Predict'].std()*3
  184. result['LowerLimit']=result['Predict'].mean()-result['Predict'].std()*3
  185. print(result)
  186. result.to_json('forcast.json', orient="records")
  187. with open('forcast.json', 'r') as json_file:
  188. json_load = json.load(json_file)
  189. #url = "https://demo.bizgaze.app/apis/v4/bizgaze/integrations/demandforecast/saveforecast/List"
  190. url=post_url
  191. payload = json.dumps(json_load)#.replace("]", "").replace("[", "")
  192. print(payload)
  193. headers = {
  194. #'Authorization': 'stat 263162e61f084d3392f162eb7ec39b2c',#demo
  195. 'Authorization': post_url_token,#test
  196. 'Content-Type': 'application/json'
  197. }
  198. response = requests.request("POST", url, headers=headers, data=payload)
  199. print("##############################################################")
  200. print(response.text)
  201. return 'done'
  202. #############################################################################################################################################################
  203. def month(Num,df):
  204. #url='https://qa.bizgaze.app/apis/v4/bizgaze/integrations/demandforecast/getitemdata'
  205. url= get_url
  206. response = urlopen(url)
  207. data_json = json.loads(response.read())
  208. headers = {
  209. 'Authorization':get_url_token,
  210. #'Authorization':'stat 873f2e6f70b3483e983972f96fbf5ea4',#qa
  211. 'Content-Type': 'application/json'
  212. }
  213. response = requests.request("GET", url, headers=headers, data=data_json)
  214. #print("##############################################################")
  215. a=response.text
  216. # print(response.text)
  217. import pandas as pd
  218. df2 = pd.read_json(response.text, orient ='index')
  219. df2=df2.reset_index()
  220. df2.columns = ['key','value']
  221. #print(df2)
  222. a=df2['value'][0]
  223. j=json.loads(a)
  224. userdata = pd.DataFrame(j)
  225. #filePath='path.csv'
  226. # if os.path.exists(filePath):
  227. # print('file exist')
  228. # os.remove('path.csv')
  229. # else:
  230. # print("file doesn't exists")
  231. # pass
  232. #userdata=df
  233. itemid=userdata[['itemname','itemid']]
  234. itemid.columns = ['ItemName', 'ItemId']
  235. #df1=pd.read_csv(r'./upload/' + name)
  236. #df1=df1[df1['obdate']!='01/01/0001']
  237. userdata.columns = ['journaldate','sum','itemname','itemid']
  238. # import pandas as pd
  239. # userdata = pd.read_csv(r'C:\Users\Bizga\Desktop\forcast\5yearsitems.csv')
  240. # itemid = userdata[['itemname', 'itemid']]
  241. #userdata['journaldate'] = pd.to_datetime(userdata['journaldate'])
  242. userdata["journaldate"] = userdata["journaldate"].astype(str)
  243. userdata[["year", "month", "day"]] = userdata["journaldate"].str.split("-", expand = True)
  244. userdata['Month-Year']=userdata['year'].astype(str)+'-'+userdata['month'].astype(str)
  245. item_unique_name = userdata['itemname'].unique()
  246. #df=pd.read_csv("C:\\Users\\Bizgaze\\2021_2022.csv")
  247. # Group the DataFrame by the 'item' column
  248. grouped = userdata.groupby('itemname')
  249. # Print the unique items in the 'item' column
  250. #print(grouped.groups.keys())
  251. # Iterate over the unique items and print the group data
  252. for item, userdata in grouped:
  253. print("itemname: ", item)
  254. item_id = userdata.iloc[-1]['itemid']
  255. print(item_id)
  256. userdata= userdata.groupby('Month-Year').sum()
  257. userdata= userdata.reset_index()
  258. fulldata=userdata[['Month-Year','sum']]
  259. fulldata.columns = ["Dates","SALES"]
  260. #************************************************************************************************************************
  261. ## Use Techniques Differencing
  262. import pandas as pd
  263. from pandas import DataFrame
  264. # userdata=pd.read_csv(r"C:\Users\Bizgaze\ipynb files\TS forcasting\working\139470.csv")
  265. userdata=userdata[['Month-Year','sum','itemid']]
  266. userdata.columns = ['Month', 'sales','sku']
  267. from statsmodels.tsa.stattools import adfuller
  268. DATE=[]
  269. SALES=[]
  270. def adf_test(series,userdata):
  271. result=adfuller(series)
  272. print('ADF Statistics: {}'.format(result[0]))
  273. print('p- value: {}'.format(result[1]))
  274. if result[1] <= 0.05:
  275. print("strong evidence against the null hypothesis, reject the null hypothesis. Data has no unit root and is stationary")
  276. else:
  277. #print(userdata)
  278. print(stationary_test(userdata))
  279. print("weak evidence against null hypothesis, time series has a unit root, indicating it is non-stationary ")
  280. #********************************************* stationary or non-stationary **********************************************************
  281. def stationary_test(userdata):
  282. data=pd.DataFrame(userdata)
  283. for i in range(1,13):
  284. print(i)
  285. sales_data=DataFrame()
  286. data['sales']=data['sales'].shift(i)
  287. data.dropna(inplace=True)
  288. #print( userdata['sales'])
  289. try:
  290. X=adf_test(data["sales"],userdata="nothing")
  291. if "non-stationary" in str(X):
  292. print("non-stationary")
  293. else:
  294. print("stationary")
  295. #print(userdata[["Month","sales"]])
  296. #df_sale=pd.DataFrame(userdata)
  297. DATE.append(data["Month"])
  298. SALES.append(data["sales"])
  299. #df4 = pd.concat([data, sales_data], axis=1)
  300. return "done"
  301. break
  302. except ValueError:
  303. pass
  304. try:
  305. adf_test(userdata["sales"],userdata)
  306. except ValueError:
  307. pass
  308. sales=pd.DataFrame(SALES).T
  309. dates=pd.DataFrame(DATE).T
  310. try:
  311. df4 = pd.concat([dates["Month"],sales["sales"]], axis=1)
  312. df4=df4.dropna()
  313. print(df4)
  314. except KeyError:
  315. df4=userdata[['Month','sales']]
  316. df4=df4.dropna()
  317. print(df4)
  318. pass
  319. #####################################################################################################################
  320. userdata=df4
  321. a = userdata.iloc[-1]['Month']
  322. userdata[["year", "month"]] = userdata["Month"].str.split("-", expand=True)
  323. #userdata = userdata[["year","month",'sum']]
  324. userdata["year"] = userdata["year"].astype(int)
  325. userdata["month"] = userdata["month"].astype(int)
  326. #####################################################################################################################
  327. #a = userdata.iloc[-1]['Month-Year']
  328. from datetime import datetime
  329. from dateutil.relativedelta import relativedelta
  330. import pandas as pd
  331. months_value = int(Num)+1
  332. base_month = pd.to_datetime(a)
  333. list_months = []
  334. def months(MD):
  335. date_after_month = ((base_month + relativedelta(months=MD)).strftime('%Y-%m'))
  336. # print
  337. list_months.append(date_after_month)
  338. for i in range(1, months_value):
  339. months(i)
  340. future_dates = pd.DataFrame(list_months)
  341. future_dates.columns = ["Dates"]
  342. fut_date = pd.DataFrame(list_months)
  343. fut_date.columns = ["Dates"]
  344. future_dates[["year", "month"]] = future_dates["Dates"].str.split("-", expand=True)
  345. future_dates.drop(['Dates'], axis=1, inplace=True)
  346. future_dates["year"] = future_dates["year"].astype(int)
  347. future_dates["month"] = future_dates["month"].astype(int)
  348. ###############################################################################
  349. userdata['sales']=userdata["sales"].astype(float)
  350. dependent = userdata[['year','month']]
  351. independent = userdata['sales']
  352. import numpy as np
  353. import pandas as pd
  354. import xgboost
  355. from sklearn.model_selection import train_test_split
  356. from sklearn.model_selection import GridSearchCV
  357. from sklearn.metrics import roc_auc_score
  358. import matplotlib.pyplot as plt
  359. #model = xgboost.XGBRegressor()
  360. from sklearn.ensemble import RandomForestRegressor
  361. model = RandomForestRegressor(random_state=1,n_jobs=-1)
  362. model.fit(dependent, independent)
  363. #future=pd.read_csv('future_dates.csv')
  364. future_prediction = model.predict(future_dates)
  365. #print(future_prediction)
  366. df=pd.DataFrame(future_prediction)
  367. df.columns = ["SALES"]
  368. frames = [fut_date, df]
  369. result = pd.concat(frames,axis=1)
  370. result['itemname'] = item
  371. result['itemid'] =item_id
  372. result.columns = ['Date','Predict','ItemName','ItemId']
  373. #result['Predict']=result["Predict"].astype(int)
  374. result['UpperLimit']=result["Predict"].mean()+result['Predict'].std()*3
  375. result['LowerLimit']=result['Predict'].mean()-result['Predict'].std()*3
  376. result["LowerLimit"][result["LowerLimit"] < 0] = 0
  377. print(result)
  378. result.to_json('forcast.json', orient="records")
  379. with open('forcast.json', 'r') as json_file:
  380. json_load = json.load(json_file)
  381. #url = "https://demo.bizgaze.app/apis/v4/bizgaze/integrations/demandforecast/saveforecast/List"
  382. url=post_url
  383. payload = json.dumps(json_load)#.replace("]", "").replace("[", "")
  384. print(payload)
  385. headers = {
  386. #'Authorization': 'stat 263162e61f084d3392f162eb7ec39b2c',#demo
  387. 'Authorization': post_url_token,#test
  388. 'Content-Type': 'application/json'
  389. }
  390. response = requests.request("POST", url, headers=headers, data=payload)
  391. print("##############################################################")
  392. print(response.text)
  393. # filePath='path.csv'
  394. # if os.path.exists(filePath):
  395. # print('file exist')
  396. # #userdata = pd.DataFrame(data)
  397. # result.to_csv('path.csv', mode='a',index=False, header=False)
  398. # else:
  399. # print("file as it doesn't exists")
  400. # #result = pd.DataFrame(data)
  401. # result.to_csv('path.csv', index=False)
  402. # result=pd.read_csv('path.csv')
  403. # result.to_json('forcast.json', orient="records")
  404. # import json
  405. # # open the JSON file and read its contents
  406. # with open(r'forcast.json', 'r') as f:
  407. # json_data = json.load(f)
  408. # print the JSON data
  409. #print(json_data)
  410. #output={"response":"success","result":json_data}
  411. #print(output)
  412. return 'done'
  413. ###############################################################################################################################################################
  414. #####################################################################################################################
  415. @app.route("/sales_forcast", methods=["GET", "POST"])
  416. def sales_forcast():
  417. #wise= request.args.get('wise').replace('{','').replace('}','')
  418. #Num= request.args.get('value').replace('{','').replace('}','')
  419. #print(wise)
  420. #print(Num)
  421. Dataset = request.get_json()
  422. a = url_list
  423. wise = a['wise']
  424. # print(x)
  425. Num = a['future_dates']
  426. get_url = a['get_url']
  427. get_url_token = a['get_url_token']
  428. post_url = a['post_url']
  429. post_url_token = a['post_url_token']
  430. #print(Dataset)
  431. import pandas as pd
  432. df=pd.DataFrame(Dataset)
  433. print(df)
  434. # a = Dataset
  435. #x = a['wise']
  436. # cmd = "python C:\\Users\\Bizga\\Desktop\\forcast\\XGdaywise.py"
  437. # os.system(cmd)
  438. #split=wise
  439. # wise='month'
  440. # Num=5
  441. if wise=='days':
  442. print('daywise groupby')
  443. output=day(Num)
  444. # cmd = "python C:\\Users\\Bizga\\Desktop\\forcast\\XGdaywise.py"+" "+ Num
  445. # os.system(cmd)
  446. else:
  447. print('monthwise groupby')
  448. output=month(Num)
  449. # payload = json.dumps(output)
  450. # payload_list="["+payload+"]"
  451. return output
  452. if __name__ == "__main__":
  453. app.run(host='0.0.0.0', port=8082)