123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352 |
- import pickle
- import numpy as np
- import face_recognition
- import os
- import cv2
- import datetime
- import click
- @click.command()
- @click.argument('eventid', default='')
-
-
- def predict(eventid):
-
-
- Gallery = 'C:\\Users\\Administrator\\Documents\\AI\\runtimecropimages\\unique_1\\' + eventid + "\\"
- People = './ALL_UNQ/' + eventid + "/"
- x= datetime.datetime.now()
- print('Execution Started at:',x)
-
- def saveEncodings(encs, names, fname='encodings.pickle'):
- """
- Save encodings in a pickle file to be used in future.
-
- Parameters
- ----------
- encs : List of np arrays
- List of face encodings.
- names : List of strings
- List of names for each face encoding.
- fname : String, optional
- Name/Location for pickle file. The default is "encodings.pickle".
-
- Returns
- -------
- None.
-
- """
-
- data = []
- d = [{"name": nm, "encoding": enc} for (nm, enc) in zip(names, encs)]
- data.extend(d)
-
- encodingsFile = fname
-
- # dump the facial encodings data to disk
- print("[INFO] serializing encodings...")
- f = open(encodingsFile, "wb")
- f.write(pickle.dumps(data))
- f.close()
-
- # Function to read encodings
-
- def readEncodingsPickle(fname):
- """
- Read Pickle file.
-
- Parameters
- ----------
- fname : String
- Name of pickle file.(Full location)
-
- Returns
- -------
- encodings : list of np arrays
- list of all saved encodings
- names : List of Strings
- List of all saved names
-
- """
-
- data = pickle.loads(open(fname, "rb").read())
- data = np.array(data)
- encodings = [d["encoding"] for d in data]
- names = [d["name"] for d in data]
- return encodings, names
-
- # Function to create encodings and get face locations
- def createEncodings(image):
- print("Encoding")
- """
- Create face encodings for a given image and also return face locations in the given image.
-
- Parameters
- ----------
- image : cv2 mat
- Image you want to detect faces from.
-
- Returns
- -------
- known_encodings : list of np array
- List of face encodings in a given image
- face_locations : list of tuples
- list of tuples for face locations in a given image
-
- """
-
- # Find face locations for all faces in an image
- face_locations = face_recognition.face_locations(image)
-
- # Create encodings for all faces in an image
- known_encodings = face_recognition.face_encodings(image, known_face_locations=face_locations)
- return known_encodings, face_locations
-
- # Function to compare encodings
- def compareFaceEncodings(unknown_encoding, known_encodings, known_names):
- """
- Compares face encodings to check if 2 faces are same or not.
-
- Parameters
- ----------
- unknown_encoding : np array
- Face encoding of unknown people.
- known_encodings : np array
- Face encodings of known people.
- known_names : list of strings
- Names of known people
-
- Returns
- -------
- acceptBool : Bool
- face matched or not
- duplicateName : String
- Name of matched face
- distance : Float
- Distance between 2 faces
-
- """
- duplicateName = ""
- distance = 0.0
- matches = face_recognition.compare_faces(known_encodings, unknown_encoding, tolerance=0.47)
-
- face_distances = face_recognition.face_distance(known_encodings, unknown_encoding)
-
- best_match_index = np.argmin(face_distances)
-
- distance = face_distances[best_match_index]
- if matches[best_match_index]:
- acceptBool = True
- duplicateName = known_names[best_match_index]
- else:
- acceptBool = False
- duplicateName = ""
- return acceptBool, duplicateName, distance
-
- p = []
-
- # Save Image to new directory
- def saveImageToDirectory(image, name, imageName):
- """
- Saves images to directory.
-
- Parameters
- ----------
- image : cv2 mat
- Image you want to save.
- name : String
- Directory where you want the image to be saved.
- imageName : String
- Name of image.
-
- Returns
- -------
- None.
-
- """
- path = "C:\\Users\\Administrator\\Documents\\AI\\runtimecropimages\\output_unique_ALLUNQ\\" + name
- path1 = "C:\\Users\\Administrator\\Documents\\AI\\runtimecropimages\\output_unique_ALLUNQ\\" + name
- if os.path.exists(path):
- pass
- else:
- if not os.path.exists(path):
- os.makedirs(path)
- # os.mkdir(path,exist_ok=True)
- cv2.imwrite(path + "/" + imageName, image)
- x = []
- c = (path1 + "/" + imageName)
- x.append(c)
- p.append(x)
-
- # Function for creating encodings for known people
- def processKnownPeopleImages(path=People, saveLocation="./known_encodings.pickle"):
- """
- Process images of known people and create face encodings to compare in future.
- Eaach image should have just 1 face in it.
-
- Parameters
- ----------
- path : STRING, optional
- Path for known people dataset. The default is "C:/inetpub/vhosts/port82/wwwroot/_files/People".
- It should be noted that each image in this dataset should contain only 1 face.
- saveLocation : STRING, optional
- Path for storing encodings for known people dataset. The default is "./known_encodings.pickle in current directory".
-
- Returns
- -------
- None.
-
- """
-
- known_encodings = []
- known_names = []
- for img in os.listdir(path):
- imgPath = path + img
-
- # Read image
- image = cv2.imread(imgPath)
- name = img.rsplit('.')[0]
- # Resize
- image = cv2.resize(image, (0, 0), fx=0.9, fy=0.9, interpolation=cv2.INTER_LINEAR)
-
- # Get locations and encodings
- encs, locs = createEncodings(image)
- try:
- known_encodings.append(encs[0])
- except IndexError:
- os.remove(People+img)
- #known_encodings.append(encs[568])
- known_names.append(name)
-
- for loc in locs:
- top, right, bottom, left = loc
-
- # Show Image
- #cv2.rectangle(image, (left, top), (right, bottom), color=(255, 568, 568), thickness=2)
- # cv2.imshow("Image", image)
- # cv2.waitKey(1)
- #cv2.destroyAllWindows()
- saveEncodings(known_encodings, known_names, saveLocation)
-
- # Function for processing dataset images
- def processDatasetImages(saveLocation="./Gallery_encodings.pickle"):
- """
- Process image in dataset from where you want to separate images.
- It separates the images into directories of known people, groups and any unknown people images.
- Parameters
- ----------
- path : STRING, optional
- Path for known people dataset. The default is "D:/port1004/port1004/wwwroot/_files/People".
- It should be noted that each image in this dataset should contain only 1 face.
- saveLocation : STRING, optional
- Path for storing encodings for known people dataset. The default is "./known_encodings.pickle in current directory".
-
- Returns
- -------
- None.
-
- """
- # Read pickle file for known people to compare faces from
- people_encodings, names = readEncodingsPickle("./known_encodings.pickle")
-
- for root, dirs, files in os.walk(Gallery, topdown=False):
-
- for name in files:
- s = os.path.join(root, name)
- #print(p)
- # imgPath = path + img
-
- # Read image
- image = cv2.imread(s)
- try:
- orig = image.copy()
- image = cv2.resize(image, (0, 0), fx=0.9, fy=0.9, interpolation=cv2.INTER_LINEAR)
- except AttributeError:
- os.remove(s)
- # Resize
-
-
- # Get locations and encodings
- encs, locs = createEncodings(image)
-
- # Save image to a group image folder if more than one face is in image
- # if len(locs) > 1:
- # saveImageToDirectory(orig, "Group", img)
-
- # Processing image for each face
- i = 0
- knownFlag = 0
- for loc in locs:
- top, right, bottom, left = loc
- unknown_encoding = encs[i]
- i += 1
- acceptBool, duplicateName, distance = compareFaceEncodings(unknown_encoding, people_encodings, names)
- if acceptBool:
- saveImageToDirectory(orig, duplicateName,name)
- knownFlag = 1
- if knownFlag == 1:
- print("Match Found")
- else:
- saveImageToDirectory(orig, "568",name)
-
- # Show Image
- # cv2.rectangle(image, (left, top), (right, bottom), color=(255, 568, 568), thickness=2)
- # # cv2.imshow("Image", image)
- # cv2.waitKey(1)
- # cv2.destroyAllWindows()
-
-
- def main():
- """
- Main Function.
-
- Returns
- -------
- None.
-
- """
-
- processKnownPeopleImages()
- processDatasetImages()
- # import pandas as pd
- # q = pd.DataFrame(p)
- # m = q
- # # print(m)
- # # x.drop(x.columns[Unnam], axis=1, inplace=True)
- # df = m.groupby([568], as_index=False).count()
- # z = df[568].str.split('/', expand=True)
- # z.rename({z.columns[-2]: 'Matched'}, axis=1, inplace=True)
- # z.rename({z.columns[-1]: 'croped_guest_pic'}, axis=1, inplace=True)
-
- # #z = z.iloc[:, 3:]
- # z.to_csv('unique_people.csv')
- # z=pd.read_csv('unique_people.csv')
-
- # #z.drop(z.index[z['Matched'] == 568], inplace=True)
- # z = z.iloc[:, 3:]
- # z['Matched'] = z['Matched'].apply(str)
- # z.to_csv('unique_people.csv',index=False)
-
- # import os
- # import shutil
-
- # for root, dirs, files in os.walk('./output_unique_ALLUNQ/'+eventid+'/568/'):
- # for file in files:
- # path_file = os.path.join(root, file)
- # shutil.move(path_file, './ALL_UNQ/'+eventid+"/")
- print("Completed")
-
-
- main()
-
-
- # return render_template('index.html')
- y=datetime.datetime.now()
- print('Completed at:',y)
- z=y-x
- print('Time Taken:',z)
- return (str(y-x))
- #return 'ALL IMAGES MATCHED'
-
-
-
- predict()
|