from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.document_loaders import PyPDFLoader, DirectoryLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.document_loaders.csv_loader import CSVLoader DATA_PATH = 'data/' DB_FAISS_PATH = 'vectorstore/db_faiss' # Create vector database def create_vector_db(): loader = CSVLoader(file_path="./supportqa.csv", encoding='iso-8859-1', source_column="Question") # loader = DirectoryLoader(DATA_PATH, # glob='*.pdf', # loader_cls=PyPDFLoader) documents = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) texts = text_splitter.split_documents(documents) embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2', model_kwargs={'device': 'cpu'}) db = FAISS.from_documents(texts, embeddings) db.save_local(DB_FAISS_PATH) if __name__ == "__main__": create_vector_db()