|
@@ -0,0 +1,564 @@
|
|
1
|
+from flask import Flask, render_template, request, redirect, Response, send_file
|
|
2
|
+import multiprocessing
|
|
3
|
+import face_recognition
|
|
4
|
+#from numba import jit
|
|
5
|
+import numpy as np
|
|
6
|
+import os
|
|
7
|
+#from flask_cors import CORS
|
|
8
|
+app = Flask(__name__)
|
|
9
|
+#CORS(app)
|
|
10
|
+lst = []
|
|
11
|
+Gallery="Gallery"
|
|
12
|
+People='People'
|
|
13
|
+
|
|
14
|
+@app.route('/', methods=['GET'])
|
|
15
|
+def resume():
|
|
16
|
+ #return render_template('index.html')
|
|
17
|
+ return 'Attendence app running'
|
|
18
|
+
|
|
19
|
+def createEncodings(image):
|
|
20
|
+ print("Encoding")
|
|
21
|
+ """
|
|
22
|
+ Create face encodings for a given image and also return face locations in the given image.
|
|
23
|
+ Parameters
|
|
24
|
+ -------
|
|
25
|
+ image : cv2 mat
|
|
26
|
+ Image you want to detect faces from.
|
|
27
|
+ Returns
|
|
28
|
+ -------
|
|
29
|
+ known_encodings : list of np array
|
|
30
|
+ List of face encodings in a given image
|
|
31
|
+ face_locations : list of tuples
|
|
32
|
+ list of tuples for face locations in a given image
|
|
33
|
+ """
|
|
34
|
+ # Find face locations for all faces in an image
|
|
35
|
+ face_locations = face_recognition.face_locations(image)
|
|
36
|
+ # Create encodings for all faces in an image
|
|
37
|
+ known_encodings = face_recognition.face_encodings(image, known_face_locations=face_locations)
|
|
38
|
+ return known_encodings, face_locations
|
|
39
|
+#@app.route('/registered', methods=["POST","GET"])
|
|
40
|
+def registered(url_list):
|
|
41
|
+ input=url_list
|
|
42
|
+
|
|
43
|
+ from pathlib import Path
|
|
44
|
+ Path(People).mkdir(exist_ok=True)
|
|
45
|
+ Path(People+"/" + input["FileName"]).mkdir(exist_ok=True)
|
|
46
|
+
|
|
47
|
+ a = input
|
|
48
|
+ # print(a)
|
|
49
|
+ x = a['FileData']
|
|
50
|
+ # print(x)
|
|
51
|
+ y = a['FileName']
|
|
52
|
+ #z = a['FileType']
|
|
53
|
+ z='jpg'
|
|
54
|
+ # CreatedBy=a['CreatedBy']
|
|
55
|
+
|
|
56
|
+ name = y+ '.'+ z
|
|
57
|
+ print(name)
|
|
58
|
+ # print(y)
|
|
59
|
+ # image = y.split("/")
|
|
60
|
+ # filename=image[-1]
|
|
61
|
+
|
|
62
|
+ # print(x)
|
|
63
|
+ try:
|
|
64
|
+ img_data = x.encode()
|
|
65
|
+ except AttributeError:
|
|
66
|
+ return "Successfully saved encoding........."
|
|
67
|
+
|
|
68
|
+ import base64
|
|
69
|
+
|
|
70
|
+ with open(People+"/" + input["FileName"] + "/" + name, "wb") as fh:
|
|
71
|
+ fh.write(base64.decodebytes(img_data))
|
|
72
|
+
|
|
73
|
+ img = People+"/" + y + "/" + name
|
|
74
|
+ saveLocation = People+"/" + y + "/" + y + ".pickle"
|
|
75
|
+
|
|
76
|
+ ############ detecting no of faceses #######################
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+ # import cv2
|
|
80
|
+ # import numpy as np
|
|
81
|
+ # import dlib
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+ # # Connects to your computer's default camera
|
|
85
|
+ # cap = cv2.imread(img)
|
|
86
|
+
|
|
87
|
+ # # Detect the coordinates
|
|
88
|
+ # detector = dlib.get_frontal_face_detector()
|
|
89
|
+
|
|
90
|
+ # number_of_faces=[]
|
|
91
|
+ # # Capture frames continuously
|
|
92
|
+ # # while True:
|
|
93
|
+
|
|
94
|
+ # # Capture frame-by-frame
|
|
95
|
+ # # ret, frame = cap
|
|
96
|
+ # frame = cap
|
|
97
|
+
|
|
98
|
+ # # RGB to grayscale
|
|
99
|
+ # gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
|
100
|
+ # faces = detector(gray)
|
|
101
|
+
|
|
102
|
+ # # Iterator to count faces
|
|
103
|
+ # i = 0
|
|
104
|
+ # for face in faces:
|
|
105
|
+
|
|
106
|
+ # # Get the coordinates of faces
|
|
107
|
+ # x, y = face.left(), face.top()
|
|
108
|
+ # x1, y1 = face.right(), face.bottom()
|
|
109
|
+ # cv2.rectangle(frame, (x, y), (x1, y1), (0, 255, 0), 2)
|
|
110
|
+ # # Increment iterator for each face in faces
|
|
111
|
+ # i = i+1
|
|
112
|
+
|
|
113
|
+ # # Display the box and faces
|
|
114
|
+ # cv2.putText(frame, 'face num'+str(i), (x-10, y-10),
|
|
115
|
+ # cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
|
|
116
|
+
|
|
117
|
+ # # if len(i)>1:
|
|
118
|
+ # # print(i)
|
|
119
|
+ # number_of_faces.append(i)
|
|
120
|
+
|
|
121
|
+
|
|
122
|
+ # if (len(number_of_faces))>1:
|
|
123
|
+ # print("Group Photo")
|
|
124
|
+ # return "Group Photo"
|
|
125
|
+ # elif (len(number_of_faces))==1:
|
|
126
|
+ # print("Single Photo")
|
|
127
|
+ # pass
|
|
128
|
+
|
|
129
|
+
|
|
130
|
+
|
|
131
|
+
|
|
132
|
+
|
|
133
|
+ def saveEncodings(encs, names, fname='encodings.pickle'):
|
|
134
|
+ """
|
|
135
|
+ Save encodings in a pickle file to be used in future.
|
|
136
|
+
|
|
137
|
+ Parameters
|
|
138
|
+ ----------
|
|
139
|
+ encs : List of np arrays
|
|
140
|
+ List of face encodings.
|
|
141
|
+ names : List of strings
|
|
142
|
+ List of names for each face encoding.
|
|
143
|
+ fname : String, optional
|
|
144
|
+ Name/Location for pickle file. The default is "encodings.pickle".
|
|
145
|
+
|
|
146
|
+ Returns
|
|
147
|
+ -------
|
|
148
|
+ None.
|
|
149
|
+
|
|
150
|
+ """
|
|
151
|
+
|
|
152
|
+ data = []
|
|
153
|
+ d = [{"name": nm, "encoding": enc} for (nm, enc) in zip(names, encs)]
|
|
154
|
+ data.extend(d)
|
|
155
|
+
|
|
156
|
+ encodingsFile = fname
|
|
157
|
+
|
|
158
|
+ # dump the facial encodings data to disk
|
|
159
|
+ print("[INFO] serializing encodings...")
|
|
160
|
+ print("[INFO] Encodings Created sucessfully")
|
|
161
|
+ f = open(encodingsFile, "wb")
|
|
162
|
+ f.write(pickle.dumps(data))
|
|
163
|
+ f.close()
|
|
164
|
+
|
|
165
|
+ # Function to create encodings and get face locations
|
|
166
|
+
|
|
167
|
+
|
|
168
|
+ def processKnownPeopleImages(img=img, saveLocation=saveLocation):
|
|
169
|
+ """
|
|
170
|
+ Process images of known people and create face encodings to compare in future.
|
|
171
|
+ Eaach image should have just 1 face in it.
|
|
172
|
+ Parameters
|
|
173
|
+ ----------
|
|
174
|
+ path : STRING, optional
|
|
175
|
+ Path for known people dataset. The default is "C:/inetpub/vhosts/port82/wwwroot/_files/People".
|
|
176
|
+ It should be noted that each image in this dataset should contain only 1 face.
|
|
177
|
+ saveLocation : STRING, optional
|
|
178
|
+ Path for storing encodings for known people dataset. The default is "./known_encodings.pickle in current directory".
|
|
179
|
+ Returns
|
|
180
|
+ -------
|
|
181
|
+ None.
|
|
182
|
+ """
|
|
183
|
+ known_encodings = []
|
|
184
|
+ known_names = []
|
|
185
|
+ # for img in os.listdir(path):
|
|
186
|
+
|
|
187
|
+ imgPath = img
|
|
188
|
+ # Read image
|
|
189
|
+ image = cv2.imread(imgPath)
|
|
190
|
+ name = img.rsplit('.')[0]
|
|
191
|
+ # Resize
|
|
192
|
+ try:
|
|
193
|
+ print(image.shape)
|
|
194
|
+ except AttributeError:
|
|
195
|
+ return "Successfully saved encoding........."
|
|
196
|
+ image = cv2.resize(image, (0, 0), fx=0.9, fy=0.9, interpolation=cv2.INTER_LINEAR)
|
|
197
|
+ # Get locations and encodings
|
|
198
|
+ encs, locs = createEncodings(image)
|
|
199
|
+ try:
|
|
200
|
+ known_encodings.append(encs[0])
|
|
201
|
+ except IndexError:
|
|
202
|
+ os.remove(saveLocation)
|
|
203
|
+ print('------------------------------------- save location --------------------------------')
|
|
204
|
+ print(saveLocation)
|
|
205
|
+ return "hello world!"
|
|
206
|
+
|
|
207
|
+
|
|
208
|
+ # known_encodings.append(encs[0])
|
|
209
|
+ known_names.append(name)
|
|
210
|
+ for loc in locs:
|
|
211
|
+ top, right, bottom, left = loc
|
|
212
|
+ # Show Image
|
|
213
|
+ # cv2.rectangle(image, (left, top), (right, bottom), color=(255, 0, 0), thickness=2)
|
|
214
|
+ # cv2.imshow("Image", image)
|
|
215
|
+ # cv2.waitKey(1)
|
|
216
|
+ # cv2.destroyAllWindows()
|
|
217
|
+ saveEncodings(known_encodings, known_names, saveLocation)
|
|
218
|
+
|
|
219
|
+ import cv2
|
|
220
|
+ #import face_recognition
|
|
221
|
+ import pickle
|
|
222
|
+
|
|
223
|
+ processKnownPeopleImages(img, saveLocation)
|
|
224
|
+ return 'Successfully saved encoding.........'
|
|
225
|
+
|
|
226
|
+
|
|
227
|
+# ******************************** COMPARUISION *********************************************************
|
|
228
|
+#@app.route('/submit', methods=["POST","GET"])
|
|
229
|
+def submit(url_list):
|
|
230
|
+
|
|
231
|
+ from datetime import datetime
|
|
232
|
+ import pytz
|
|
233
|
+ tz_NY = pytz.timezone('Asia/Kolkata')
|
|
234
|
+ datetime_NY = datetime.now(tz_NY)
|
|
235
|
+ India_Date = (datetime_NY.strftime("%Y-%m-%d"))
|
|
236
|
+ India_Date = str(India_Date)
|
|
237
|
+ # India_Time = (datetime_NY.strftime("%I:%M:%S %p"))
|
|
238
|
+ # India_Time = str(India_Time)
|
|
239
|
+ input=url_list
|
|
240
|
+ import pickle
|
|
241
|
+ import cv2
|
|
242
|
+
|
|
243
|
+ from pathlib import Path
|
|
244
|
+ Path(Gallery).mkdir(exist_ok=True)
|
|
245
|
+ Path(Gallery+"/"+ India_Date).mkdir(exist_ok=True)
|
|
246
|
+ Path(Gallery+"/"+ India_Date +'/'+ input["FileName"]).mkdir(exist_ok=True)
|
|
247
|
+
|
|
248
|
+ a = input
|
|
249
|
+ # print(a)
|
|
250
|
+ x = a['FileData']
|
|
251
|
+ # print(x)
|
|
252
|
+ y = a['FileName']
|
|
253
|
+ # z = a['FileType']
|
|
254
|
+ z='jpg'
|
|
255
|
+ # CreatedBy=a['CreatedBy']
|
|
256
|
+
|
|
257
|
+ name = y + '.' + z
|
|
258
|
+ # print(name)
|
|
259
|
+ # print(y)
|
|
260
|
+ # image = y.split("/")
|
|
261
|
+ # filename=image[-1]
|
|
262
|
+
|
|
263
|
+ # print(x)
|
|
264
|
+ img_data = x.encode()
|
|
265
|
+
|
|
266
|
+ import base64
|
|
267
|
+
|
|
268
|
+
|
|
269
|
+ with open(Gallery+"/"+India_Date+'/' + input["FileName"] + "/" + name, "wb") as fh:
|
|
270
|
+ fh.write(base64.decodebytes(img_data))
|
|
271
|
+
|
|
272
|
+ path = Gallery+"/" +India_Date+'/'+ y + "/" + name
|
|
273
|
+ pickle_location = People+"/" + y + "/" + y + ".pickle"
|
|
274
|
+ import pathlib
|
|
275
|
+ file = pathlib.Path(pickle_location)
|
|
276
|
+ if file.exists ():
|
|
277
|
+ pass
|
|
278
|
+ else:
|
|
279
|
+ print ("pickle File not exist")
|
|
280
|
+ print(name)
|
|
281
|
+ return "Please get registered with your Profile Picture",500
|
|
282
|
+ # return "Face not found in profile (please change your profile)",500
|
|
283
|
+
|
|
284
|
+
|
|
285
|
+ check_faces=People+"/" + y + "/" + y + ".jpg"
|
|
286
|
+ print(check_faces)
|
|
287
|
+
|
|
288
|
+
|
|
289
|
+ ############ detecting no of faceses #######################
|
|
290
|
+
|
|
291
|
+
|
|
292
|
+ import cv2
|
|
293
|
+ import numpy as np
|
|
294
|
+ import dlib
|
|
295
|
+
|
|
296
|
+
|
|
297
|
+ # Connects to your computer's default camera
|
|
298
|
+ cap = cv2.imread(check_faces)
|
|
299
|
+
|
|
300
|
+ # Detect the coordinates
|
|
301
|
+ detector = dlib.get_frontal_face_detector()
|
|
302
|
+
|
|
303
|
+ number_of_faces=[]
|
|
304
|
+ # Capture frames continuously
|
|
305
|
+ # while True:
|
|
306
|
+
|
|
307
|
+ # Capture frame-by-frame
|
|
308
|
+ # ret, frame = cap
|
|
309
|
+ frame = cap
|
|
310
|
+
|
|
311
|
+ # RGB to grayscale
|
|
312
|
+ gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
|
313
|
+ faces = detector(gray)
|
|
314
|
+
|
|
315
|
+ # Iterator to count faces
|
|
316
|
+ i = 0
|
|
317
|
+ for face in faces:
|
|
318
|
+
|
|
319
|
+ # Get the coordinates of faces
|
|
320
|
+ x, y = face.left(), face.top()
|
|
321
|
+ x1, y1 = face.right(), face.bottom()
|
|
322
|
+ cv2.rectangle(frame, (x, y), (x1, y1), (0, 255, 0), 2)
|
|
323
|
+ # Increment iterator for each face in faces
|
|
324
|
+ i = i+1
|
|
325
|
+
|
|
326
|
+ # Display the box and faces
|
|
327
|
+ cv2.putText(frame, 'face num'+str(i), (x-10, y-10),
|
|
328
|
+ cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
|
|
329
|
+
|
|
330
|
+ # if len(i)>1:
|
|
331
|
+ # print(i)
|
|
332
|
+ number_of_faces.append(i)
|
|
333
|
+
|
|
334
|
+
|
|
335
|
+ if (len(number_of_faces))>1:
|
|
336
|
+ print("Group Photo")
|
|
337
|
+ return "Too Many Faces in Profile Picture",500
|
|
338
|
+ elif (len(number_of_faces))==1:
|
|
339
|
+ print("Single Photo")
|
|
340
|
+ pass
|
|
341
|
+
|
|
342
|
+
|
|
343
|
+
|
|
344
|
+
|
|
345
|
+ def readEncodingsPickle(fname):
|
|
346
|
+ """
|
|
347
|
+ Read Pickle file.
|
|
348
|
+
|
|
349
|
+ Parameters
|
|
350
|
+ ----------
|
|
351
|
+ fname : String
|
|
352
|
+ Name of pickle file.(Full location)
|
|
353
|
+
|
|
354
|
+ Returns
|
|
355
|
+ -------
|
|
356
|
+ encodings : list of np arrays
|
|
357
|
+ list of all saved encodings
|
|
358
|
+ names : List of Strings
|
|
359
|
+ List of all saved names
|
|
360
|
+
|
|
361
|
+ """
|
|
362
|
+
|
|
363
|
+
|
|
364
|
+ data = pickle.loads(open(fname, "rb").read())
|
|
365
|
+
|
|
366
|
+
|
|
367
|
+ data = np.array(data)
|
|
368
|
+ encodings = [d["encoding"] for d in data]
|
|
369
|
+ names = [d["name"] for d in data]
|
|
370
|
+ return encodings, names
|
|
371
|
+
|
|
372
|
+
|
|
373
|
+ def compareFaceEncodings(unknown_encoding, known_encodings, known_names):
|
|
374
|
+ """
|
|
375
|
+ Compares face encodings to check if 2 faces are same or not.
|
|
376
|
+
|
|
377
|
+ Parameters
|
|
378
|
+ ----------
|
|
379
|
+ unknown_encoding : np array
|
|
380
|
+ Face encoding of unknown people.
|
|
381
|
+ known_encodings : np array
|
|
382
|
+ Face encodings of known people.
|
|
383
|
+ known_names : list of strings
|
|
384
|
+ Names of known people
|
|
385
|
+
|
|
386
|
+ Returns
|
|
387
|
+ -------
|
|
388
|
+ acceptBool : Bool
|
|
389
|
+ face matched or not
|
|
390
|
+ duplicateName : String
|
|
391
|
+ Name of matched face
|
|
392
|
+ distance : Float
|
|
393
|
+ Distance between 2 faces
|
|
394
|
+
|
|
395
|
+ """
|
|
396
|
+ duplicateName = ""
|
|
397
|
+ distance = 0.0
|
|
398
|
+ matches = face_recognition.compare_faces(known_encodings, unknown_encoding, tolerance=0.54)
|
|
399
|
+ face_distances = face_recognition.face_distance(known_encodings, unknown_encoding)
|
|
400
|
+
|
|
401
|
+ best_match_index = np.argmin(face_distances)
|
|
402
|
+
|
|
403
|
+ distance = face_distances[best_match_index]
|
|
404
|
+ if matches[best_match_index]:
|
|
405
|
+ acceptBool = True
|
|
406
|
+ duplicateName = known_names[best_match_index]
|
|
407
|
+ else:
|
|
408
|
+ acceptBool = False
|
|
409
|
+ duplicateName = ""
|
|
410
|
+ return acceptBool, duplicateName, distance
|
|
411
|
+
|
|
412
|
+ #p = []
|
|
413
|
+
|
|
414
|
+
|
|
415
|
+ def processDatasetImages(path=path, pickle_location=pickle_location):
|
|
416
|
+ """
|
|
417
|
+ Process image in dataset from where you want to separate images.
|
|
418
|
+ It separates the images into directories of known people, groups and any unknown people images.
|
|
419
|
+ Parameters
|
|
420
|
+ ----------
|
|
421
|
+ path : STRING, optional
|
|
422
|
+ Path for known people dataset. The default is "D:/port1004/port1004/wwwroot/_files/People".
|
|
423
|
+ It should be noted that each image in this dataset should contain only 1 face.
|
|
424
|
+ saveLocation : STRING, optional
|
|
425
|
+ Path for storing encodings for known people dataset. The default is "./known_encodings.pickle in current directory".
|
|
426
|
+
|
|
427
|
+ Returns
|
|
428
|
+ -------
|
|
429
|
+ None.
|
|
430
|
+
|
|
431
|
+ """
|
|
432
|
+ # Read pickle file for known people to compare faces from
|
|
433
|
+
|
|
434
|
+ people_encodings, names = readEncodingsPickle(pickle_location)
|
|
435
|
+ # print(p)
|
|
436
|
+ # imgPath = path + img
|
|
437
|
+
|
|
438
|
+ # Read image
|
|
439
|
+ # path=r"C:\Users\katku\Pictures\final\100011460000611.jpg"
|
|
440
|
+ image = cv2.imread(path)
|
|
441
|
+ #orig = image.copy()
|
|
442
|
+
|
|
443
|
+ # Resize
|
|
444
|
+ image = cv2.resize(image, (0, 0), fx=0.9, fy=0.9, interpolation=cv2.INTER_LINEAR)
|
|
445
|
+
|
|
446
|
+ # Get locations and encodings
|
|
447
|
+ encs, locs = createEncodings(image)
|
|
448
|
+
|
|
449
|
+ # Save image to a group image folder if more than one face is in image
|
|
450
|
+ # if len(locs) > 1:
|
|
451
|
+ # saveImageToDirectory(orig, "Group", img)
|
|
452
|
+
|
|
453
|
+ # Processing image for each face
|
|
454
|
+ i = 0
|
|
455
|
+ knownFlag = 0
|
|
456
|
+ for loc in locs:
|
|
457
|
+ top, right, bottom, left = loc
|
|
458
|
+ unknown_encoding = encs[i]
|
|
459
|
+ i += 1
|
|
460
|
+ acceptBool, duplicateName, distance = compareFaceEncodings(unknown_encoding, people_encodings, names)
|
|
461
|
+ if acceptBool:
|
|
462
|
+ # saveImageToDirectory(orig, duplicateName,name)
|
|
463
|
+ knownFlag = 1
|
|
464
|
+ if knownFlag == 1:
|
|
465
|
+ print("Match Found")
|
|
466
|
+
|
|
467
|
+
|
|
468
|
+ #print(path)
|
|
469
|
+ with_extension = path.split("/")[-1]
|
|
470
|
+ without_extension = with_extension.split(".")[0]
|
|
471
|
+
|
|
472
|
+ # output_s = {"FileID": without_extension,
|
|
473
|
+ # "Date": India_Date,
|
|
474
|
+ # "Time": India_Time}
|
|
475
|
+ # output_json = json.dumps(output_s)
|
|
476
|
+ output_json='Matched successfully'
|
|
477
|
+ print(loc)
|
|
478
|
+ lst.append(output_json)
|
|
479
|
+
|
|
480
|
+ print(output_json)
|
|
481
|
+ # exit()
|
|
482
|
+
|
|
483
|
+ else:
|
|
484
|
+ print('Not Matched')
|
|
485
|
+ pass
|
|
486
|
+ # saveImageToDirectory(orig, "0",name)
|
|
487
|
+
|
|
488
|
+
|
|
489
|
+ import numpy as np
|
|
490
|
+ import json
|
|
491
|
+
|
|
492
|
+ processDatasetImages(path, pickle_location)
|
|
493
|
+ return lst[0]
|
|
494
|
+ #return 'matched successfully'
|
|
495
|
+
|
|
496
|
+
|
|
497
|
+@app.route('/detect', methods=["POST"])
|
|
498
|
+def detect():
|
|
499
|
+ if __name__ == "__main__":
|
|
500
|
+
|
|
501
|
+ url_list=[]
|
|
502
|
+ Dataset= request.get_json()
|
|
503
|
+ # id = "100013660000125"
|
|
504
|
+ url_list.append(Dataset)
|
|
505
|
+ # multiprocessing
|
|
506
|
+ pool_size = multiprocessing.cpu_count() * 2
|
|
507
|
+ with multiprocessing.Pool(pool_size) as pool:
|
|
508
|
+ try:
|
|
509
|
+ results = pool.map(submit, url_list)
|
|
510
|
+ except FileNotFoundError:
|
|
511
|
+ return 'please get registered with your PhotoID',500
|
|
512
|
+ except IndexError:
|
|
513
|
+ #return 'unable to recognize face'
|
|
514
|
+ #return 'failed',500
|
|
515
|
+ return "Face does not Match with Profile Picture",500
|
|
516
|
+
|
|
517
|
+ pool.close()
|
|
518
|
+
|
|
519
|
+ return results[0]
|
|
520
|
+
|
|
521
|
+
|
|
522
|
+
|
|
523
|
+@app.route('/register', methods=["POST"])
|
|
524
|
+def register():
|
|
525
|
+ print("hello start..........")
|
|
526
|
+ if __name__ == "__main__":
|
|
527
|
+
|
|
528
|
+ url_list=[]
|
|
529
|
+ Dataset= request.get_json()
|
|
530
|
+ # id = "100013660000125"
|
|
531
|
+ url_list.append(Dataset)
|
|
532
|
+ UserLocation=Dataset["FilePath"]
|
|
533
|
+ print(UserLocation)
|
|
534
|
+
|
|
535
|
+ # if "cO2" in UserLocation or UserLocation is None:
|
|
536
|
+ # pass
|
|
537
|
+ # else:
|
|
538
|
+ # return "Please update the URL in the integration"
|
|
539
|
+
|
|
540
|
+
|
|
541
|
+ # multiprocessing
|
|
542
|
+ pool_size = multiprocessing.cpu_count() * 2
|
|
543
|
+ with multiprocessing.Pool(pool_size) as pool:
|
|
544
|
+ try:
|
|
545
|
+ results = pool.map(registered, url_list)
|
|
546
|
+ except IndexError:
|
|
547
|
+ pass
|
|
548
|
+ print('face not found')
|
|
549
|
+ except FileNotFoundError:
|
|
550
|
+ pass
|
|
551
|
+
|
|
552
|
+
|
|
553
|
+ #os.remove(img)
|
|
554
|
+ # return 'unable to recognize face'
|
|
555
|
+
|
|
556
|
+ pool.close()
|
|
557
|
+ #return results[0]
|
|
558
|
+ return 'Successfully saved encoding.........'
|
|
559
|
+
|
|
560
|
+
|
|
561
|
+
|
|
562
|
+
|
|
563
|
+if __name__ == "__main__":
|
|
564
|
+ app.run(host='0.0.0.0',port =5003,debug=False)
|