|
@@ -18,21 +18,19 @@ list_output=[]
|
18
|
18
|
|
19
|
19
|
def day(Num,get_url,get_url_token,post_url,post_url_token):
|
20
|
20
|
|
|
21
|
+ import requests
|
21
|
22
|
|
22
|
|
- #url='https://qa.bizgaze.app/apis/v4/bizgaze/integrations/demandforecast/getitemdata'
|
23
|
|
- url= get_url
|
24
|
|
- response = urlopen(url)
|
25
|
|
- data_json = json.loads(response.read())
|
|
23
|
+ url = get_url
|
|
24
|
+
|
|
25
|
+ payload = {}
|
26
|
26
|
headers = {
|
27
|
|
- 'Authorization':get_url_token,
|
28
|
|
- #'Authorization':'stat 873f2e6f70b3483e983972f96fbf5ea4',#qa
|
29
|
|
- 'Content-Type': 'application/json'
|
|
27
|
+ 'Authorization': get_url_token
|
30
|
28
|
}
|
31
|
|
- response = requests.request("GET", url, headers=headers, data=data_json)
|
32
|
|
- #print("##############################################################")
|
33
|
|
- a=response.text
|
|
29
|
+
|
|
30
|
+ response = requests.request("GET", url, headers=headers, data=payload)
|
|
31
|
+ #a=response.text
|
34
|
32
|
# print(response.text)
|
35
|
|
-
|
|
33
|
+
|
36
|
34
|
import pandas as pd
|
37
|
35
|
|
38
|
36
|
df2 = pd.read_json(response.text, orient ='index')
|
|
@@ -49,7 +47,7 @@ def day(Num,get_url,get_url_token,post_url,post_url_token):
|
49
|
47
|
|
50
|
48
|
#df1=pd.read_csv(r'./upload/' + name)
|
51
|
49
|
#df1=df1[df1['obdate']!='01/01/0001']
|
52
|
|
- userdata.columns = ['journaldate','sum','itemname','itemid']
|
|
50
|
+ userdata.columns = ['journaldate','sum','itemid','itemname']
|
53
|
51
|
|
54
|
52
|
|
55
|
53
|
# import pandas as pd
|
|
@@ -57,7 +55,8 @@ def day(Num,get_url,get_url_token,post_url,post_url_token):
|
57
|
55
|
# itemid = userdata[['itemname', 'itemid']]
|
58
|
56
|
#userdata['journaldate'] = pd.to_datetime(userdata['journaldate'])
|
59
|
57
|
userdata["journaldate"] = userdata["journaldate"].astype(str)
|
60
|
|
- userdata[["year", "month", "day"]] = userdata["journaldate"].str.split("/", expand = True)
|
|
58
|
+ #userdata[["year", "month", "day"]] = userdata["journaldate"].str.split("/", expand = True)
|
|
59
|
+ userdata[[ "day","month","year", ]] = userdata["journaldate"].str.split("-", expand = True)
|
61
|
60
|
#userdata['Month-Year']=userdata['year'].astype(str)+'-'+userdata['month'].astype(str)
|
62
|
61
|
item_unique_name = userdata['itemname'].unique()
|
63
|
62
|
|
|
@@ -86,9 +85,10 @@ def day(Num,get_url,get_url_token,post_url,post_url_token):
|
86
|
85
|
## Use Techniques Differencing
|
87
|
86
|
import pandas as pd
|
88
|
87
|
from pandas import DataFrame
|
|
88
|
+
|
89
|
89
|
|
90
|
90
|
# userdata=pd.read_csv(r"C:\Users\Bizgaze\ipynb files\TS forcasting\working\139470.csv")
|
91
|
|
-
|
|
91
|
+ userdata=userdata[['journaldate','sum','itemid']]
|
92
|
92
|
userdata.columns = ['Date', 'sales','sku']
|
93
|
93
|
from statsmodels.tsa.stattools import adfuller
|
94
|
94
|
|
|
@@ -151,8 +151,11 @@ def day(Num,get_url,get_url_token,post_url,post_url_token):
|
151
|
151
|
#####################################################################################################################
|
152
|
152
|
userdata=df4
|
153
|
153
|
a = userdata.iloc[-1]['Date']
|
154
|
|
- userdata['Date'] = pd.to_datetime(userdata['Date'])
|
|
154
|
+
|
|
155
|
+ #userdata['Date'] = pd.to_datetime(userdata['Date'])
|
155
|
156
|
userdata["Date"] = userdata["Date"].astype(str)
|
|
157
|
+ print('after testing')
|
|
158
|
+ print(userdata)
|
156
|
159
|
userdata[["year", "month", "day"]] = userdata["Date"].str.split("-", expand = True)
|
157
|
160
|
#userdata[["year", "month"]] = userdata["Month"].str.split("-", expand=True)
|
158
|
161
|
#userdata = userdata[["year","month",'sum']]
|
|
@@ -231,14 +234,14 @@ def day(Num,get_url,get_url_token,post_url,post_url_token):
|
231
|
234
|
with open('forcast.json', 'r') as json_file:
|
232
|
235
|
json_load = json.load(json_file)
|
233
|
236
|
#url = "https://demo.bizgaze.app/apis/v4/bizgaze/integrations/demandforecast/saveforecast/List"
|
234
|
|
- url=post_url
|
|
237
|
+ url=post_url
|
235
|
238
|
|
236
|
239
|
payload = json.dumps(json_load)#.replace("]", "").replace("[", "")
|
237
|
|
- print(payload)
|
|
240
|
+ #print(payload)
|
238
|
241
|
headers = {
|
239
|
242
|
#'Authorization': 'stat 263162e61f084d3392f162eb7ec39b2c',#demo
|
240
|
243
|
'Authorization': post_url_token,#test
|
241
|
|
- 'Content-Type': 'application/json'
|
|
244
|
+ #'Content-Type': 'application/json'
|
242
|
245
|
}
|
243
|
246
|
response = requests.request("POST", url, headers=headers, data=payload)
|
244
|
247
|
print("##############################################################")
|
|
@@ -253,19 +256,31 @@ def day(Num,get_url,get_url_token,post_url,post_url_token):
|
253
|
256
|
|
254
|
257
|
def month(Num,get_url,get_url_token,post_url,post_url_token):
|
255
|
258
|
#url='https://qa.bizgaze.app/apis/v4/bizgaze/integrations/demandforecast/getitemdata'
|
256
|
|
- url= get_url
|
257
|
|
- response = urlopen(url)
|
258
|
|
- data_json = json.loads(response.read())
|
|
259
|
+ # url= get_url
|
|
260
|
+ # response = urlopen(url)
|
|
261
|
+ # data_json = json.loads(response.read())
|
|
262
|
+ # headers = {
|
|
263
|
+ # 'Authorization':get_url_token,
|
|
264
|
+ # #'Authorization':'stat 873f2e6f70b3483e983972f96fbf5ea4',#qa
|
|
265
|
+ # 'Content-Type': 'application/json'
|
|
266
|
+ # }
|
|
267
|
+ # response = requests.request("GET", url, headers=headers, data=data_json)
|
|
268
|
+ # #print("##############################################################")
|
|
269
|
+ # a=response.text
|
|
270
|
+ # # print(response.text)
|
|
271
|
+ import requests
|
|
272
|
+
|
|
273
|
+ url = get_url
|
|
274
|
+
|
|
275
|
+ payload = {}
|
259
|
276
|
headers = {
|
260
|
|
- 'Authorization':get_url_token,
|
261
|
|
- #'Authorization':'stat 873f2e6f70b3483e983972f96fbf5ea4',#qa
|
262
|
|
- 'Content-Type': 'application/json'
|
|
277
|
+ 'Authorization': get_url_token
|
263
|
278
|
}
|
264
|
|
- response = requests.request("GET", url, headers=headers, data=data_json)
|
265
|
|
- #print("##############################################################")
|
266
|
|
- a=response.text
|
267
|
|
- # print(response.text)
|
268
|
|
-
|
|
279
|
+
|
|
280
|
+ response = requests.request("GET", url, headers=headers, data=payload)
|
|
281
|
+
|
|
282
|
+ #print(response.text)
|
|
283
|
+
|
269
|
284
|
import pandas as pd
|
270
|
285
|
|
271
|
286
|
df2 = pd.read_json(response.text, orient ='index')
|
|
@@ -290,13 +305,15 @@ def month(Num,get_url,get_url_token,post_url,post_url_token):
|
290
|
305
|
|
291
|
306
|
#df1=pd.read_csv(r'./upload/' + name)
|
292
|
307
|
#df1=df1[df1['obdate']!='01/01/0001']
|
293
|
|
- userdata.columns = ['journaldate','sum','itemname','itemid']
|
|
308
|
+ userdata.columns = ['journaldate','sum','itemid','itemname']
|
294
|
309
|
# import pandas as pd
|
295
|
310
|
# userdata = pd.read_csv(r'C:\Users\Bizga\Desktop\forcast\5yearsitems.csv')
|
296
|
311
|
# itemid = userdata[['itemname', 'itemid']]
|
297
|
312
|
#userdata['journaldate'] = pd.to_datetime(userdata['journaldate'])
|
298
|
313
|
userdata["journaldate"] = userdata["journaldate"].astype(str)
|
299
|
|
- userdata[["year", "month", "day"]] = userdata["journaldate"].str.split("-", expand = True)
|
|
314
|
+ #userdata[["year", "month", "day"]] = userdata["journaldate"].str.split("-", expand = True)
|
|
315
|
+ userdata[[ "day","month","year", ]] = userdata["journaldate"].str.split("-", expand = True)
|
|
316
|
+ #userdata[["year", "day", "month"]] = userdata["journaldate"].str.split("/", expand=True)
|
300
|
317
|
userdata['Month-Year']=userdata['year'].astype(str)+'-'+userdata['month'].astype(str)
|
301
|
318
|
item_unique_name = userdata['itemname'].unique()
|
302
|
319
|
|
|
@@ -471,18 +488,18 @@ def month(Num,get_url,get_url_token,post_url,post_url_token):
|
471
|
488
|
with open('forcast.json', 'r') as json_file:
|
472
|
489
|
json_load = json.load(json_file)
|
473
|
490
|
#url = "https://demo.bizgaze.app/apis/v4/bizgaze/integrations/demandforecast/saveforecast/List"
|
474
|
|
- url=post_url
|
|
491
|
+ url=post_url
|
475
|
492
|
|
476
|
493
|
payload = json.dumps(json_load)#.replace("]", "").replace("[", "")
|
477
|
|
- print(payload)
|
|
494
|
+ #print(payload)
|
478
|
495
|
headers = {
|
479
|
496
|
#'Authorization': 'stat 263162e61f084d3392f162eb7ec39b2c',#demo
|
480
|
497
|
'Authorization': post_url_token,#test
|
481
|
|
- 'Content-Type': 'application/json'
|
|
498
|
+ # 'Content-Type': 'application/json'
|
482
|
499
|
}
|
483
|
500
|
response = requests.request("POST", url, headers=headers, data=payload)
|
484
|
|
- print("##############################################################")
|
485
|
|
- print(response.text)
|
|
501
|
+ # print("##############################################################")
|
|
502
|
+ # print(response.text)
|
486
|
503
|
|
487
|
504
|
# filePath='path.csv'
|
488
|
505
|
|
|
@@ -527,7 +544,7 @@ def sales_forcast():
|
527
|
544
|
#print(wise)
|
528
|
545
|
#print(Num)
|
529
|
546
|
Dataset = request.get_json()
|
530
|
|
- a = url_list
|
|
547
|
+ a = Dataset
|
531
|
548
|
wise = a['wise']
|
532
|
549
|
# print(x)
|
533
|
550
|
Num = a['future_dates']
|
|
@@ -537,9 +554,9 @@ def sales_forcast():
|
537
|
554
|
post_url_token = a['post_url_token']
|
538
|
555
|
|
539
|
556
|
#print(Dataset)
|
540
|
|
- import pandas as pd
|
541
|
|
- df=pd.DataFrame(Dataset)
|
542
|
|
- print(df)
|
|
557
|
+ # import pandas as pd
|
|
558
|
+ # df=pd.DataFrame(Dataset)
|
|
559
|
+ # print(df)
|
543
|
560
|
# a = Dataset
|
544
|
561
|
#x = a['wise']
|
545
|
562
|
# cmd = "python C:\\Users\\Bizga\\Desktop\\forcast\\XGdaywise.py"
|