Browse Source

Update 'Demand_forcasting/forcasting2.py'

SadhulaSaiKumar 1 year ago
parent
commit
63177fcdaa
1 changed files with 57 additions and 40 deletions
  1. 57
    40
      Demand_forcasting/forcasting2.py

+ 57
- 40
Demand_forcasting/forcasting2.py View File

@@ -18,21 +18,19 @@ list_output=[]
18 18
 
19 19
 def day(Num,get_url,get_url_token,post_url,post_url_token):
20 20
 
21
+    import requests
21 22
 
22
-    #url='https://qa.bizgaze.app/apis/v4/bizgaze/integrations/demandforecast/getitemdata'
23
-    url= get_url
24
-    response = urlopen(url)
25
-    data_json = json.loads(response.read())
23
+    url = get_url
24
+
25
+    payload = {}
26 26
     headers = {
27
-            'Authorization':get_url_token,
28
-            #'Authorization':'stat 873f2e6f70b3483e983972f96fbf5ea4',#qa
29
-            'Content-Type': 'application/json'
27
+    'Authorization': get_url_token
30 28
     }
31
-    response = requests.request("GET", url, headers=headers, data=data_json)
32
-    #print("##############################################################")
33
-    a=response.text
29
+
30
+    response = requests.request("GET", url, headers=headers, data=payload)
31
+    #a=response.text
34 32
     # print(response.text)
35
-    
33
+
36 34
     import pandas as pd
37 35
     
38 36
     df2 = pd.read_json(response.text, orient ='index')
@@ -49,7 +47,7 @@ def day(Num,get_url,get_url_token,post_url,post_url_token):
49 47
     
50 48
     #df1=pd.read_csv(r'./upload/' + name)
51 49
     #df1=df1[df1['obdate']!='01/01/0001']
52
-    userdata.columns = ['journaldate','sum','itemname','itemid']
50
+    userdata.columns = ['journaldate','sum','itemid','itemname']
53 51
     
54 52
     
55 53
     # import pandas as pd
@@ -57,7 +55,8 @@ def day(Num,get_url,get_url_token,post_url,post_url_token):
57 55
     # itemid = userdata[['itemname', 'itemid']]
58 56
     #userdata['journaldate'] = pd.to_datetime(userdata['journaldate'])
59 57
     userdata["journaldate"] = userdata["journaldate"].astype(str)
60
-    userdata[["year", "month", "day"]] = userdata["journaldate"].str.split("/", expand = True)
58
+    #userdata[["year", "month", "day"]] = userdata["journaldate"].str.split("/", expand = True)
59
+    userdata[[ "day","month","year", ]] = userdata["journaldate"].str.split("-", expand = True)
61 60
     #userdata['Month-Year']=userdata['year'].astype(str)+'-'+userdata['month'].astype(str)
62 61
     item_unique_name = userdata['itemname'].unique()
63 62
     
@@ -86,9 +85,10 @@ def day(Num,get_url,get_url_token,post_url,post_url_token):
86 85
         ## Use Techniques Differencing
87 86
         import pandas as pd
88 87
         from pandas import DataFrame
88
+
89 89
         
90 90
         # userdata=pd.read_csv(r"C:\Users\Bizgaze\ipynb files\TS forcasting\working\139470.csv")
91
-        
91
+        userdata=userdata[['journaldate','sum','itemid']]
92 92
         userdata.columns = ['Date', 'sales','sku']
93 93
         from statsmodels.tsa.stattools import adfuller
94 94
         
@@ -151,8 +151,11 @@ def day(Num,get_url,get_url_token,post_url,post_url_token):
151 151
     #####################################################################################################################  
152 152
         userdata=df4
153 153
         a = userdata.iloc[-1]['Date']
154
-        userdata['Date'] = pd.to_datetime(userdata['Date'])
154
+
155
+        #userdata['Date'] = pd.to_datetime(userdata['Date'])
155 156
         userdata["Date"] = userdata["Date"].astype(str)
157
+        print('after testing')
158
+        print(userdata)
156 159
         userdata[["year", "month", "day"]] = userdata["Date"].str.split("-", expand = True)
157 160
         #userdata[["year", "month"]] = userdata["Month"].str.split("-", expand=True)
158 161
         #userdata = userdata[["year","month",'sum']]
@@ -231,14 +234,14 @@ def day(Num,get_url,get_url_token,post_url,post_url_token):
231 234
         with open('forcast.json', 'r') as json_file:
232 235
             json_load = json.load(json_file)
233 236
             #url = "https://demo.bizgaze.app/apis/v4/bizgaze/integrations/demandforecast/saveforecast/List"
234
-            url=post_url
237
+        url=post_url
235 238
     
236 239
         payload = json.dumps(json_load)#.replace("]", "").replace("[", "")
237
-        print(payload)
240
+        #print(payload)
238 241
         headers = {
239 242
             #'Authorization': 'stat 263162e61f084d3392f162eb7ec39b2c',#demo
240 243
             'Authorization': post_url_token,#test
241
-            'Content-Type': 'application/json'
244
+            #'Content-Type': 'application/json'
242 245
         }
243 246
         response = requests.request("POST", url, headers=headers, data=payload)
244 247
         print("##############################################################")
@@ -253,19 +256,31 @@ def day(Num,get_url,get_url_token,post_url,post_url_token):
253 256
 
254 257
 def month(Num,get_url,get_url_token,post_url,post_url_token):
255 258
     #url='https://qa.bizgaze.app/apis/v4/bizgaze/integrations/demandforecast/getitemdata'
256
-    url= get_url
257
-    response = urlopen(url)
258
-    data_json = json.loads(response.read())
259
+    # url= get_url
260
+    # response = urlopen(url)
261
+    # data_json = json.loads(response.read())
262
+    # headers = {
263
+    #         'Authorization':get_url_token,
264
+    #         #'Authorization':'stat 873f2e6f70b3483e983972f96fbf5ea4',#qa
265
+    #         'Content-Type': 'application/json'
266
+    # }
267
+    # response = requests.request("GET", url, headers=headers, data=data_json)
268
+    # #print("##############################################################")
269
+    # a=response.text
270
+    # # print(response.text)
271
+    import requests
272
+
273
+    url = get_url
274
+
275
+    payload = {}
259 276
     headers = {
260
-            'Authorization':get_url_token,
261
-            #'Authorization':'stat 873f2e6f70b3483e983972f96fbf5ea4',#qa
262
-            'Content-Type': 'application/json'
277
+    'Authorization': get_url_token
263 278
     }
264
-    response = requests.request("GET", url, headers=headers, data=data_json)
265
-    #print("##############################################################")
266
-    a=response.text
267
-    # print(response.text)
268
-    
279
+
280
+    response = requests.request("GET", url, headers=headers, data=payload)
281
+
282
+    #print(response.text)
283
+
269 284
     import pandas as pd
270 285
     
271 286
     df2 = pd.read_json(response.text, orient ='index')
@@ -290,13 +305,15 @@ def month(Num,get_url,get_url_token,post_url,post_url_token):
290 305
     
291 306
     #df1=pd.read_csv(r'./upload/' + name)
292 307
     #df1=df1[df1['obdate']!='01/01/0001']
293
-    userdata.columns = ['journaldate','sum','itemname','itemid']
308
+    userdata.columns = ['journaldate','sum','itemid','itemname']
294 309
     # import pandas as pd
295 310
     # userdata = pd.read_csv(r'C:\Users\Bizga\Desktop\forcast\5yearsitems.csv')
296 311
     # itemid = userdata[['itemname', 'itemid']]
297 312
     #userdata['journaldate'] = pd.to_datetime(userdata['journaldate'])
298 313
     userdata["journaldate"] = userdata["journaldate"].astype(str)
299
-    userdata[["year", "month", "day"]] = userdata["journaldate"].str.split("-", expand = True)
314
+    #userdata[["year", "month", "day"]] = userdata["journaldate"].str.split("-", expand = True)
315
+    userdata[[ "day","month","year", ]] = userdata["journaldate"].str.split("-", expand = True)
316
+    #userdata[["year", "day", "month"]] = userdata["journaldate"].str.split("/", expand=True)
300 317
     userdata['Month-Year']=userdata['year'].astype(str)+'-'+userdata['month'].astype(str)
301 318
     item_unique_name = userdata['itemname'].unique()
302 319
     
@@ -471,18 +488,18 @@ def month(Num,get_url,get_url_token,post_url,post_url_token):
471 488
         with open('forcast.json', 'r') as json_file:
472 489
             json_load = json.load(json_file)
473 490
             #url = "https://demo.bizgaze.app/apis/v4/bizgaze/integrations/demandforecast/saveforecast/List"
474
-            url=post_url
491
+        url=post_url
475 492
     
476 493
         payload = json.dumps(json_load)#.replace("]", "").replace("[", "")
477
-        print(payload)
494
+        #print(payload)
478 495
         headers = {
479 496
             #'Authorization': 'stat 263162e61f084d3392f162eb7ec39b2c',#demo
480 497
             'Authorization': post_url_token,#test
481
-            'Content-Type': 'application/json'
498
+           # 'Content-Type': 'application/json'
482 499
         }
483 500
         response = requests.request("POST", url, headers=headers, data=payload)
484
-        print("##############################################################")
485
-        print(response.text)
501
+        # print("##############################################################")
502
+        # print(response.text)
486 503
         
487 504
         # filePath='path.csv'
488 505
 
@@ -527,7 +544,7 @@ def sales_forcast():
527 544
     #print(wise)
528 545
     #print(Num)
529 546
     Dataset = request.get_json()
530
-    a = url_list
547
+    a = Dataset
531 548
     wise = a['wise']
532 549
     # print(x)
533 550
     Num = a['future_dates']
@@ -537,9 +554,9 @@ def sales_forcast():
537 554
     post_url_token = a['post_url_token']
538 555
 
539 556
     #print(Dataset)
540
-    import pandas as pd
541
-    df=pd.DataFrame(Dataset)
542
-    print(df)
557
+    # import pandas as pd
558
+    # df=pd.DataFrame(Dataset)
559
+    # print(df)
543 560
     # a = Dataset
544 561
     #x = a['wise']
545 562
     # cmd = "python C:\\Users\\Bizga\\Desktop\\forcast\\XGdaywise.py"

Loading…
Cancel
Save